## Basis

A basis for a subspace $\mathcal{V}$ is a linearly independent set of vectors, $\mathcal{B}$, so that span $\mathcal{B}=\mathcal{V}$.

## Dimension

The dimension of a subspace $V$ is the number of elements in a basis for $V$.

35
Let $\vec{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \vec{w}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$, and $V=\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\}$.
35.1 Describe $V$.
35.2 Is $\{\vec{u}, \vec{v}, \vec{w}\}$ a basis for $V$ ? Why or why not?
35.3 Give a basis for $V$.
35.4 Give another basis for $V$.
35.5 Is $\operatorname{span}\{\vec{u}, \vec{v}\}$ a basis for $V$ ? Why or why not?
35.6 What is the dimension of $V$ ?

Let $\vec{a}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \vec{b}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right], \vec{c}=\left[\begin{array}{l}7 \\ 8 \\ 8\end{array}\right]$ (notice these vectors are linearly independent) and let $P=\operatorname{span}\{\vec{a}, \vec{b}\}$ and $Q=\operatorname{span}\{\vec{b}, \vec{c}\}$.
36.1 Give a basis for and the dimension of $P$.
36.2 Give a basis for and the dimension of $Q$.
36.3 Is $P \cap Q$ a subspace? If so, give a basis for it and its dimension.
36.4 Is $P \cup Q$ a subspace? If so, give a basis for it and its dimension.

